
PHYSICAL REVIEW E 66, 037102 ~2002!
Phase transitions in a network with a range-dependent connection probability
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We consider a one-dimensional network in which the nodes at Euclidean distancel can have long range
connections with a probabiltyP( l ); l 2d in addition to nearest neighbor connections. This system has been
shown to exhibit small-world behavior ford,2, above which its behavior is like a regular lattice. From the
study of the clustering coefficients, we show that there is a transition to a random network atd51. The finite
size scaling analysis of the clustering coefficients obtained from numerical simulations indicates that a con-
tinuous phase transition occurs at this point. Using these results, we find that the two transitions occurring in
this network can be detected in any dimension by the behavior of a single quantity, the average bond length.
The phase transitions in all dimensions are nontrivial in nature.
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A network is a collection of nodes that are connec
either directly or indirectly by links. There are two extrem
examples of networks: the regular and the random netw
In a regular network~with infinitely many nodes!, the prob-
ability that any two arbitrary nodes are connected is van
ingly small while in random networks, this probability re
mains finite. The two main properties that distinguish the
two networks are the chemical distance and the cluste
coefficient. The chemical distance is the average shortest
tance between any two nodes and is a long distance prop
In a network withL nodes, the chemical distance typical
behaves asSL; lnL when it is random, whileSL;L1/d in a
regular network ind dimensions. The clustering coefficientC
is the average fraction of connected triplets. Since the c
tering coefficient measures the local connectivity structure
is a short range property. TypicallyC is high for the regular
network and low for the random network.

Recently, another kind of network, the small-world ne
work @1#, was proposed which shows random-network-li
properties at large scales and regular-network-like prope
at small scales. Precisely, the chemical distanceSL behaves
as ln(L) while C assumes a high value~comparable to a regu
lar network! in this network. Small-world effect can be de
veloped out of a regular lattice having local connectio
when long range links or connections are allowed to e
even with a very small probability.

The underlying structure of a wide range of networks
cluding social, biological, Internet, and transport netwo
has been argued to be small-world-like@2#. Additional ran-
dom long range connections in model systems such as I
chains or percolation networks also lead to new critical
havior @3–5#. Many of these networks also show scale-fr
behavior, i.e., ifQ(k) is the number of nodes havingk con-
nections, thenQ(k);k2g in a scale-free network@6#.

In the Watts-Strogatz~WS! model @7#, the nodes are ar
ranged in a ring. Small-world behavior is observed when
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nearest neighbor links are rewired randomly with a proba
ity p. Later it was shown that there is a continuous pha
transition occurring atp→0 @4# from a regular to a small-
world phase. For all values of 0,p,1, the network remains
small-world-like withSL; ln(L) and a high value ofC. Only
at p51, the network behaves like a random one whenC
vanishes. The transitions in the WS model, which is a st
dard prototype model for small-world behavior, are therefo
trivial as the critical points do not separate phases of diff
ent critical behavior. In a critical network with nontrivia
phase transitions the critical points should have differ
phases on either side such that the small-world ph
emerges as a truly intermediate phase in between the ran
and regular phases.

In this paper, we show the existence of a network
which such nontrivial transitions can be achieved by tun
an appropriate parameter. In this network@8–10#, in addition
to the nearest neighbor links, connection to a node at
Euclidean distancel is present with a probability

P~ l !; l 2d. ~1!

Such a network can model the behavior of linear polymers
which connections to further neighbors indeed occur with
power law probability. However, in order to simulate th
polymer properly, additional constraints have to be cons
ered@10#. Studies on the physical layout of the Internet al
strongly suggest that the connections are governed b
power law probability@11#.

This network shows small-world effect belowd52 for
the one-dimensional case@8,10# while according to Ref.@9#,
there is evidence of small-world behavior atd5d for the
d-dimensional network.

We have shown that there are two transitions occurring
such a network in one dimension:~i! a random to small-
world network transition atd51; ~ii ! a small-world to regu-
lar network transition atd52.
©2002 The American Physical Society02-1
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The second transition is already known to exist@8,10#
although the nature of the transition has not been explore
detail. We focus our attention on the first transition which h
not been investigated before in either this or any other n
work to the best of our knowledge. We have been able
locate the critical point and the characteristic critical exp
nents for this transition.

The other important result of our study is the identific
tion of a single quantity that can detect both the transitio
This analysis can be extended to higher dimensions and
critical points are detected in any dimensiond. The phase
diagram in thed-d plane shows that the phase transitions
nontrivial in all dimensions.

First we examine the properties of this network in det
in one dimension. The one-dimensional network consists
L nodes occupying the sites of a one-dimensional lattice
length L such that the nearest neighbor links are of u
length ~see Fig. 1!. In addition to the nearest neighbor link
there are links between nodes at distancel with the probabil-
ity given by Eq.~1!. Note that in one dimension, the Euclid
ean distance between two nodes coincides with the num
of nearest neighbor links separating them. The nearest ne
bors links are always present in this network. This cor
sponds to the situation in many realistic networks such
linear polymers, Ising models, etc. When the probability
normalized one has

(
1, l<L

P~ l !51. ~2!

The above normalization condition essentially implies t
the average number of long distance connections for e
node is one. This enables a restriction on the network as
number of long distance bonds is conserved. If the value od
is made very high, most of the long distance connections
be restricted to the near neighbors and one will effectiv
get a model with short range connections only. Asd is made
smaller, further neighbor bonds will be chosen. For ve

FIG. 1. A section of the network under consideration in~a! one
and~b! two dimensions: the solid lines denote the nearest neigh
links between the nodes~circles!. The dashed lines denote the lon
range connections occurring with the probability given in Eq.~1!. In
~a! the nodesABC form a triplet cluster.
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small values ofd, connections to nodes at all possible d
tances are made and the network behaves like a random
work.

From the above picture and the knowledge of the ex
tence of a nontrivial phase transition from small-world
regular-network-like behavior occurring atd52, we expect
that all three kinds of behavior~regular, random, and small
world! will be present in this model—or in other words
there will be three regions along thed axis:d,dc

(1) where it
behaves like a random network,dc

(1),d,dc
(2) where it is

small-world-like andd.dc
(2) where it is like a regular net-

work. A nonzero value ofdc
(1) will signify a nontrivial tran-

sition. In order to study the transition from the random to t
small-world phase it is suffcient to study the clustering co
ficients~the chemical distance has similar scaling behavio
both phases!. Here we consider clusters which are triple
with three membersA, B, and C. The condition that they
form a cluster is that ifB is connected toA andC, there is
also a connection betweenA andC. Since the nearest neigh
bors are always present, we classify the possible cluster
three classes.

~1! Clusters with two nearest neighbor~nn! links each of
length unity and one next nearest neighbor link of length

~2! Clusters with one nn link, the other two links are
length l 1.1 andl 111.

~3! Clusters in which there is no nn link; the links hav
lengthsl 1.1, l 2.1, andl 11 l 2.

Note that the triangular inequality of the link lengths
not valid in one dimension as the distances are always m
sured along the chain.

Let Ci be the probability of the occurrence of a clust
belonging to thei th class (i 51,2,3). In the continuum limit
when l varies continuously,Ci take the forms

C15
22d

E P~ l !dl

, ~3a!

C25

E
2

L22

P~ l 1!P~ l 111!dl1

S E P~ l !dl D 2 , ~3b!

C35

E
l 1 ,l 2

P~ l 1!P~ l 2!P~ l 11 l 2!dl1dl2

S E P~ l !dl D 3 . ~3c!

In the last equation, the integration variablesl 1 ,l 2 satisfy
l 11 l 2,L22.

C5S i 51
3 Ci is then the clustering coefficient of the system

We find that ford,1, Ci vanishes for alli as L→`. In
particular, to the leading order,C 1;Ld21 while C2 and C3
areO(L21). The vanishing ofC belowd51 indicates that in
this region the network is random. Ford.1, all the three
quantities remain finite in the same limit. HenceC may be
interpreted as an order-parameter-like quantity which v
ishes atd51 where the transition from random to sma
world phase takes place.

or
2-2
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In order to find out the nature of the transition occurri
at d51 ~which we identify asdc

(1)), we perform numerical
simulations and find out the clustering coefficient for cha
of different lengths with long range connections existi
with a probability given by Eq.~1!.

In a thermodynamic system, the finite size scaling fo
quantityF is given by

F~ t !5Lf/n f ~ tL1/n!, ~4!

where t is the deviation from the critical point,f is the
critical exponent associated withF (F;t2f), andn is the
correlation length exponent. We use a finite size scaling fo
for the clustering coefficients which is analogous to that u
in thermodynamic phase transitions,

C5L2ag„~dc
(1)2d!Lb

…. ~5!

Usingdc
(1)51, the value obtained in the continuum case,

find a very good data collapse whenCLa is plotted against
(d21)Lb with the valuesa50.22860.017 andb50.258
60.030 ~see Fig. 2!. These values are obtained using t
Bhattacharjee-Seno method of data collapse@12#. For large
values of x, it is expected thatg(x);xa/b. Note that the
value of a/b is the estimate of the exponentb as we have
interpretedC as the ‘‘order parameter’’@i.e., C;(d2dc

(1))b

for L→`], thereforeb50.8960.04. Also, the finite size
scaling form indicates thatn51/b53.8760.51.

From the above, we conclude that there is a continu
phase transition occurring atdc

(1)51 with characteristic ex-
ponentsn;3.87 andb50.89. Hereb describes how the
clustering coefficient vanishes as one approaches the ran
network and the exponentn is associated with a divergin
length scale. Hence in this network the small-world pha
appears as an intermediate phase between the random
regular phases and the characterisric behavior of the netw
can be controlled by tuning the parameterd.

In general, the clustering coefficient and the chemical d
tances can detect either of the two phase transitions oc
ring in a network. This is because they have similar scal

FIG. 2. The data collapse of the scaled clustering coefficien
shown for one-dimensional chains of different lengthsL with peri-
odic boundary conditions. Herea50.228 andb50.258
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behavior in two of the phases and a different behavior in
third. Interestingly, in the present model, we find a quant
the average bond length, which shows different scaling
havior in each of these three phases. In the continuum li
the average bond lengtĥl & shows the following scaling be
havior:

^ l &;L ~d,1!, ~6a!

;L22d ~1,d,2!, ~6b!

;O~1! ~d.2!. ~6c!

We immediately notice that the crossovers occur atdc
(1) and

dc
(2) . Hence we find that this is a key quantity since both t

transitions can be detected from it. This quantity is a
simple to calculate. The numerical values of^ l & for discrete
lattices agree with the above results as shown in Fig. 3.

Although the transition points can be located from t
behavior of^ l &, estimating the exponents is not straightfo
ward as it is difficult to cast the behavior of^ l & in a standard
finite size scaling form as in Eq.~5!.

The one-dimensional network which we have discus
so far can be generalized to any dimensiond where the nodes
occupy the sites of ad-dimensional hypercube of lengthL1/d

is

FIG. 3. The scaling behavior of the average bond length^ l & for
one-dimensional chains of different lengthsL is shown. In~a! ^ l &
for d50.2 ~n!, 0.6~1!, and 0.8~h! along with the best fit lines are
shown. The results agree with the behavior^ l &;L for d,1. In ~b!
the curveŝ l & are shown ford51.2 ~h!, 1.4 ~1!, 1.8 ~L!, 2.2 ~3!,
and 2.4~n!. The best fit lines for the curves with 1,d,2 are also
shown which show agreement with the behavior^ l &;L22d for 1
,d,2. For values ofd.2, ^ l & does not depend onL.
2-3



cu
f
-
e

s.

t
n

ng
e
-

t

n
r
ll
a

le
s
b
ca
a
m
ee

re

th
ilit
od
g

-
pa-

of a
x-
u-
of
he
si-
of

ent
the

ef-
the
age
en-
his
in

tity.

BRIEF REPORTS PHYSICAL REVIEW E66, 037102 ~2002!
@see Fig. 1~b!#. Each node is connected to its 2d nearest
neighbors and long range links to further neighbors oc
with a probability given in Eq.~1!. ~Note that the structure o
this network is different from that of a linear polymer em
bedded in ad-dimensional lattice, although the long rang
bonds occur with a power law probability in both system!
For d.1, neitherdc

(1) nor dc
(2) is known. In principle, these

can be estimated by studying the chemical distance and
clustering coefficients in one dimension but the calculatio
become much more complicated. The average bond le
^ l &, however, can be easily calculated in any general dim
sion and we find thêl & again shows different kinds of be
havior in the three regions 0,d,d ~where ^ l &;L), d,d
,d11 ~where ^ l &;Ld2d11), and d.d11 @where ^ l &
;O(1)]. From the results of one dimension we proceed
claim that the transition points ind dimensions aredc

(1)5d
and dc

(2)5d11. This indicates that the small-world regio
again exists as an intermediate phase between a growing
dom region and a regular region. The width of the sma
world phase is independent of the dimensionality. The ph
diagram in thed-d plane is shown in Fig. 4.

As mentioned earlier, many real networks exhibit sca
free behavior which implies that the degree distribution i
power law. Here we checked that there is no scale-free
havior in any regime in the one-dimensional case. One
expect a scale free behavior when the network shows sm
world effect. The absence of scale-free behavior confir
that a small-world network is not necessarily scale-fr
However, when distance dependence in the form of Eq.~1! is
introduced in a growing network, several interesting featu
are observed@13#.

In summary, our analysis of a model network where
additional long range bonds are present with a probab
dependent on the Euclidean distance separating the n
shows that there is a continuous phase transition occurrin
-

d
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a finite value of the parameterd where the clustering coeffi
cient behaves like an order parameter. The transition se
rates a random and a small-world phase. With evidence
transition from a small-world to regular behavior already e
isting, we find that this network can be tuned to show reg
lar, random, and small-world behavior for different values
d. The different behavior occurring on the two sides of t
critical points mark the existence of nontrivial phase tran
tions. This is a feature absent in the familiar WS model
small-world network, where the transitions are reminisc
of the zero temperature phase transitions occurring in
one-dimensional Ising model.

Comparing the results obtained from the clustering co
ficients and the chemical distances, we find that both
transitions can be detected from the behavior of the aver
bond lengths. This analysis can be extended to any dim
sion and the transition points located. We believe that t
idea could be useful in general for locating critical points
network whenever the bond length is a meaningful quan

P.S. acknowledges DST~India! Grant No. SP/S2/M-11/
99.

FIG. 4. The phase diagram of the network in thed-d plane. SW
denotes the small-world phase.
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