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Phase transitions in a network with a range-dependent connection probability
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We consider a one-dimensional network in which the nodes at Euclidean distaaoehave long range
connections with a probabilt(1)~1~? in addition to nearest neighbor connections. This system has been
shown to exhibit small-world behavior fa¥<2, above which its behavior is like a regular lattice. From the
study of the clustering coefficients, we show that there is a transition to a random netwki afThe finite
size scaling analysis of the clustering coefficients obtained from numerical simulations indicates that a con-
tinuous phase transition occurs at this point. Using these results, we find that the two transitions occurring in
this network can be detected in any dimension by the behavior of a single quantity, the average bond length.
The phase transitions in all dimensions are nontrivial in nature.
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A network is a collection of nodes that are connectednearest neighbor links are rewired randomly with a probabil-
either directly or indirectly by links. There are two extreme ity p. Later it was shown that there is a continuous phase
examples of networks: the regular and the random networkransition occurring ap— 0 [4] from a regular to a small-

In a regular networkwith infinitely many nodeg the prob-  world phase. For all values of<Op<1, the network remains
ability that any two arbitrary nodes are connected is vanishsmall-world-like withS_~In(L) and a high value of. Only
ingly small while in random networks, this probability re- at p=1, the network behaves like a random one wiien
mains finite. The two main properties that distinguish thesevanishes. The transitions in the WS model, which is a stan-
two networks are the chemical distance and the clusteringard prototype model for small-world behavior, are therefore
coefficient. The chemical distance is the average shortest digrvial as the critical points do not separate phases of differ-
tance between any two nodes and is a long distance propergnt critical behavior. In a critical network with nontrivial

In a network withL nodes, the chemical distance typically phase transitions the critical points should have different
behaves a$§, ~InL when it is random, whil&S ~L¥ in a  phases on either side such that the small-world phase
regular network ird dimensions. The clustering coefficight emerges as a truly intermediate phase in between the random
is the average fraction of connected triplets. Since the clusand regular phases.

tering coefficient measures the local connectivity structure, it In this paper, we show the existence of a network in
is a short range property. Typicalyis high for the regular which such nontrivial transitions can be achieved by tuning
network and low for the random network. an appropriate parameter. In this netwf8k-10], in addition

Recently, another kind of network, the small-world net-to the nearest neighbor links, connection to a node at an
work [1], was proposed which shows random-network-likeEuclidean distanceis present with a probability
properties at large scales and regular-network-like properties
at small scales. Precisely, the chemical distaicdéehaves
as InL) while C assumes a high val{eomparable to a regu- P()~I17°. (h)
lar network in this network. Small-world effect can be de-
veloped out of a regular lattice having local connections
when long range links or connections are allowed to exisSuch a network can model the behavior of linear polymers in
even with a very small probability. which connections to further neighbors indeed occur with a

The underlying structure of a wide range of networks in-power law probability. However, in order to simulate the
cluding social, biological, Internet, and transport networkspolymer properly, additional constraints have to be consid-
has been argued to be small-world-lik&. Additional ran-  ered[10]. Studies on the physical layout of the Internet also
dom long range connections in model systems such as Isingfrongly suggest that the connections are governed by a
chains or percolation networks also lead to new critical bepower law probability{ 11].
havior [3-5]. Many of these networks also show scale-free  This network shows small-world effect belod~=2 for
behavior, i.e., ifQ(k) is the number of nodes havirgcon-  the one-dimensional ca$8,10] while according to Ref(9],
nections, the@Q(k)~k™” in a scale-free networl6]. there is evidence of small-world behavior &+d for the

In the Watts-Strogat?WS) model[7], the nodes are ar- d-dimensional network.
ranged in a ring. Small-world behavior is observed when the We have shown that there are two transitions occurring in

such a network in one dimensiofi) a random to small-
world network transition ab=1; (ii) a small-world to regu-
*Email addresses: parongama@vsnl.net; paro@cubmb.ernet.in lar network transition at=2.
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A.-" 7T~ C small values of§, connections to nodes at all possible dis-
—6—6—H—B—=0© tances are made and the network behaves like a random net-
e _.--T B work.
(@ From the above picture and the knowledge of the exis-
tence of a nontrivial phase transition from small-world to
&h & A A regular-network-like behavior occurring a2, we expect
3/ 3/ AYZ L . .
that all three kinds of behavidregular, random, and small-
© &— - world) will be present in this model—or in other words,
A AN A AN there will be three regions along tléeaxis: 6< 5(61) where it
T 1.7 71T behaves like a random network{!< 5< &*) where it is
o——B—0— small-world-like ands> 6*) where it is like a regular net-
P A o~ work. A nonzero value oﬁgl) will signify a nontrivial tran-
A" A7 L A\ 4

(b) sition. In order to study the transition from the random to the
. . o small-world phase it is suffcient to study the clustering coef-
an dF(IS 'tvlv'o'i‘ji‘:‘sg:;r;r?sf,t?ﬁenseot;?:jolril:];:zee:]g?:?ie;aet;g:?22ieghb0ficients(the chemical distanc_e has similar sca_ling behayior in
links between the node(.sircles) The dashed lines denote the long ch phasgs Here we consider clusters W.h.ICh are tnplets
range connections occurring w'ith the probability given in &g. In with three me’T‘be”‘*. B’. and C. The condition that th_ey
(a) the nodesABC form a triplet cluster. form a cluster is that iB is connected t&A andC, there is
also a connection betwegnandC. Since the nearest neigh-
bors are always present, we classify the possible clusters in
The second transition is already known to eXi8t10] three classes.
although the nature of the transition has not been explored in (1) Clusters with two nearest neighb@m) links each of
detail. We focus our attention on the first transition which hadength unity and one next nearest neighbor link of length 2.
not been investigated before in either this or any other net- (2) Clusters with one nn link, the other two links are of
work to the best of our knowledge. We have been able tdengthl;>1 andl;+1.
locate the critical point and the characteristic critical expo- (3) Clusters in which there is no nn link; the links have
nents for this transition. lengthsl;>1, [,>1, andl;+1,.
The other important result of our study is the identifica- Note that the triangular inequality of the link lengths is
tion of a single quantity that can detect both the transitionsnot valid in one dimension as the distances are always mea-
This analysis can be extended to higher dimensions and tteured along the chain.

critical points are detected in any dimensidnThe phase Let C; be the probability of the occurrence of a cluster
diagram in thes-d plane shows that the phase transitions argoelonging to theth class {=1,2,3). In the continuum limit
nontrivial in all dimensions. when| varies continuoushy; take the forms
First we examine the properties of this network in detail o6
in one dimension. The one-dimensional network consists of Cy=——, (3a)
L nodes occupying the sites of a one-dimensional lattice of f P(1)dl
length L such that the nearest neighbor links are of unit
length (see Fig. L In addition to the nearest neighbor links
there are links between nodes at distahaéth the probabil- IL_ZP(I JP(l,+ 1ydl
ity given by Eq.(1). Note that in one dimension, the Euclid- ) v !
ean distance between two nodes coincides with the number Cr= 2 , (3b)
of nearest neighbor links separating them. The nearest neigh- ( f P(I)dl)
bors links are always present in this network. This corre-
sponds to the situation in many realistic networks such as
linear polymers, Ising models, etc. When the probability is f PP P(4+1,)dldl,
normalized one has _ 2l
C3 3 (39
( f P(I)dl)
P()=1. 2 In the last equation, the integration variablgsl, satisfy

1<l

A

L
I +1,<L—2.

=32 . is then the clustering coefficient of the system.
The above normalization condition essentially implies thatwWe find that for <1, C; vanishes for alli asL—o~. In
the average number of long distance connections for eacparticular, to the leading ordef,;~L°"* while C, and C,
node is one. This enables a restriction on the network as thareO(L ~1). The vanishing o€ below §=1 indicates that in
number of long distance bonds is conserved. If the valug of this region the network is random. Fét>1, all the three
is made very high, most of the long distance connections wilguantities remain finite in the same limit. Hen€emay be
be restricted to the near neighbors and one will effectivelyinterpreted as an order-parameter-like quantity which van-
get a model with short range connections only.Ais made ishes até=1 where the transition from random to small-
smaller, further neighbor bonds will be chosen. For veryworld phase takes place.
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FIG. 2. The data collapse of the scaled clustering coefficients is ]
shpwn for one-dlme_n_smnal chains of different lengthsith peri- 100 L ngﬂiﬂjﬂm ......... g
odic boundary conditions. Here=0.228 andb=0.258 o .0 o EM 3
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In order to find out the nature of the transition occurring _:.:-:':_fjft._i_A_.<>,.<>..<>.<> OGO -+ 1
at 5=1 (which we identify ass{")), we perform numerical Wkt XK E
) . . ' - . X K K K AXRERO0K ]
simulations and find out the clustering coefficient for chains A A B AARA
of different lengths with long range connections existing (®)
. e . ) ) ) MR | . s n " PR R R
with a probability given by Eq(1). . ! 1000 10000
In a thermodynamic system, the finite size scaling for a L

quantity ® is given by
FIG. 3. The scaling behavior of the average bond lertjttor
O(t)=LY" (1LY, (4 one-dimensional chains of different lengthss shown. In(@) (I)
for 6=0.2(A), 0.6(+), and 0.8(0) along with the best fit lines are
wheret is the deviation from the critical pointp is the  shown. The results agree with the behayigr-L for 5<1. In (b)
critical exponent associated with (d~t~ %), andv is the  the curves() are shown fors=1.2(0J), 1.4(+), 1.8(0), 2.2(X),
correlation length exponent. We use a finite size scaling fornd 2-4(2). The best fit lines for the curves with<l6<2 are also

i i | 2-5
for the clustering coefficients which is analogous to that used"oWn which show agreement with the behayir~L="* for 1
in thermodynamic phase transitions, <8< 2. For values ofs>2, (I) does not depend oh.

—L-ag((sM— s)LP). 5 behavior in two of the phases and a different behavior in the
¢ 9((% L) © third. Interestingly, in the present model, we find a quantity,

Using 5£1):1, the value obtained in the continuum case, Wethe average bond length, which shows different scaling be-

find a very good data collapse whéh? is plotted against ?hawor n eactr)] ofdtr|1ese H:hreﬁ phatsr:es.f Iﬂ thg contlnlgumbhmn,
(5—1)LP with the valuesa=0.228+0.017 andb=0.258 N€ average bond lengih) shows the following scaling be-

+0.030 (see Fig. 2 These values are obtained using the 21"

Bhattacharjee-Seno method of data collafis8. For large (h~L  (8<1), (6a)
values ofx, it is expected thag(x)~x¥". Note that the

value ofa/b is the estimate of the exponefitas we have ~L27% (1<6<2), (6b)
interpretedC as the “order parameterfi.e., C~(5— &6(M)#

for L—o], therefore 3=0.89+0.04. Also, the finite size ~0(1) (6>2). (60

scaling form indicates that=1/b=3.87+0.51.

From the above, we conclude that there is a continuou¥Ve immediately notice that the crossovers occusét and
phase transition occurring @")=1 with characteristic ex- 6%°). Hence we find that this is a key quantity since both the
ponentsy~3.87 andB8=0.89. HereB describes how the transitions can be detected from it. This quantity is also
clustering coefficient vanishes as one approaches the randagimple to calculate. The numerical values(bf for discrete
network and the exponent is associated with a diverging lattices agree with the above results as shown in Fig. 3.
length scale. Hence in this network the small-world phase Although the transition points can be located from the
appears as an intermediate phase between the random apehavior of(l), estimating the exponents is not straightfor-
regular phases and the characterisric behavior of the netwoskard as it is difficult to cast the behavior @f) in a standard
can be controlled by tuning the parameter finite size scaling form as in E@5).

In general, the clustering coefficient and the chemical dis- The one-dimensional network which we have discussed
tances can detect either of the two phase transitions occuso far can be generalized to any dimensiomhere the nodes
ring in a network. This is because they have similar scalingoccupy the sites of d-dimensional hypercube of lengtt/d
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[see Fig. 1b)]. Each node is connected to itd Zhearest 4
neighbors and long range links to further neighbors occur

with a probability given in Eq(1). (Note that the structure of 3
this network is different from that of a linear polymer em- RANDOM
bedded in ad-dimensional lattice, although the long range d

bonds occur with a power law probability in both systems. 2 REGULAR
Ford>1, neithers") nor 6{) is known. In principle, these

can be estimated by studying the chemical distance and the

clustering coefficients in one dimension but the calculations 1 : "

become much more complicated. The average bond length 0 1 2 5 3

(1), however, can be easily calculated in any general dimen-

sion and we find th¢l) again shows different kinds of be- £G4, The phase diagram of the network in thel plane. SW

havior in the three regions<05<d (where(l)~L), d<&  genotes the small-world phase.

<d+1 (where (I)~L%"%*1), and 6>d+1 [where (I) o _ _

~0(1)]. From the results of one dimension we proceed tod finite value of.the parametérwhere the clustenng. goeffl-

claim that the transition points id dimensions aref{)=d  cient behaves like an order parameter. The transition sepa-
° rates a random and a small-world phase. With evidence of a

and 5(°2):d+1' This indicates that the small-world region transition from a small-world to regular behavior already ex-
again ex!sts as an |ntermed|ate_phase betv_veen agrowing rairs]:[ing, we find that this network can be tuned to show regu-
dom region and a regular region. The width of the small-

o . . ) lar, random, and small-world behavior for different values of
W.OHd ph‘.ise IS mdependgnt of the.d|m.en3|onallty. The phasg "thq gifferent behavior occurring on the two sides of the
diagram in thes-d plane is shown in Fig. 4. . critical points mark the existence of nontrivial phase transi-

As mentioned earlier, many real networks exhibit scale+jons This is a feature absent in the familiar WS model of
free behavior which implies that the degree distribution is aymgal-world network, where the transitions are reminiscent

power law. Here we checked that there is no scale-free b&sf the zero temperature phase transitions occurring in the
havior in any regime in the one-dimensional case. One cagne-dimensional Ising model.

expect a scale free behavior when the network shows small- Comparing the results obtained from the clustering coef-

world effect. The absence of scale-free behavior confirm§icients and the chemical distances, we find that both the
that a small-world network is not necessarily scale-freeqansitions can be detected from the behavior of the average
However, when distance dependence in the form o B4s  pond lengths. This analysis can be extended to any dimen-
introduced in a growing network, several interesting featuregjon and the transition points located. We believe that this
are observed13]. idea could be useful in general for locating critical points in

In summary, our analysis of a model network where the,enyork whenever the bond length is a meaningful quantity.
additional long range bonds are present with a probability

dependent on the Euclidean distance separating the nodesP.S. acknowledges DS{india) Grant No. SP/S2/M-11/
shows that there is a continuous phase transition occurring &9.
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